If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x=15
We move all terms to the left:
2x^2-19x-(15)=0
a = 2; b = -19; c = -15;
Δ = b2-4ac
Δ = -192-4·2·(-15)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{481}}{2*2}=\frac{19-\sqrt{481}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{481}}{2*2}=\frac{19+\sqrt{481}}{4} $
| i=5^5i= | | 26c-3)=76 | | 5y-12=3y+4 | | 5y-12=3y-4 | | 5y+12=3y+4 | | t=144/55-11/12 | | 12/13t+3/26=81/78t= | | (6-x)(x-1)= | | (6-x)=(x-1)= | | -7/6=n+2/5 | | h=15/8/45/16h= | | 7x+9/2=5/3-15 | | 2/3=6/2n+5 | | g=12/25/6/50g= | | x^2+44x-5600=0 | | K=3/4+1/3k= | | 0.05x^2+2.2x-280=0 | | 5x31/4= | | 20x+160=180 | | 24x-84=180 | | 5x+55=2x+18 | | 8x^2-0.8x-0.08=0 | | 0.25x=3.5 | | x3+9x-54=0 | | 15a=24 | | 9x^2-0.4x-0.04=0 | | w+8/9=-1/6 | | x-12=1/2x+7 | | 2/5p=5 | | 2/p=5 | | T11m-17=16 | | 3x^2-32x+96=0 |